
metabarcoding.org/sumaclust

With the development of next-generation sequencing, efficient tools are needed to handle millions of
sequences in reasonable amounts of time. Sumaclust is a program developed by the LECA. Sumaclust
aims to cluster sequences in a way that is fast and exact at the same time. This tool has been developed to
be adapted to the type of data generated by DNA metabarcoding, i.e. entirely sequenced, short markers.
Sumaclust clusters sequences using the same clustering algorithm as UCLUST and CD-HIT. This algorithm
is mainly useful to detect the 'erroneous' sequences created during amplification and sequencing protocols,
deriving from 'true' sequences. Currently, Sumaclust is available as a program that you can download and
install on Unix-like machines.

Sumaclust can be downloaded from the metabarcoding.org GitLab. The archive of the latest tagged version
can be downloaded on the GitLab wiki page:

https://git.metabarcoding.org/obitools/sumaclust/wikis/home

The versions downloaded this way are for Unix-like systems compatible with SIMD SSE2 instructions and
POSIX threads. Pre-compiled versions of GCC for OS X can be found here, that might be helpful if you
encounter problems compiling the programs. Send an email at celine.mercier@metabarcoding.org for other
versions, or if you have any inquiries.

Untar the archive, go into the newly created directory and compile:

tar	–zxvf	sumaclust_v[x.x.xx].tar.gz
cd	sumaclust_v[x.x.xx]
make	-C	sumalibs	install
make	install

Sumaclust: fast and exact clustering of
sequences

Introduction

Download and installation of Sumaclust

Download

Installation

file:///Users/celinemercier/Documents/workspace/sumaclust/metabarcoding.org/sumaclust
http://www-leca.ujf-grenoble.fr/?lang=en
https://git.metabarcoding.org/obitools/sumaclust/wikis/home
http://hpc.sourceforge.net/
mailto:celine.mercier@metabarcoding.org

You can compile Sumaclust with clang , which deactivates OpenMP , with:

make	CC=clang

Sumaclust clusters sequences using the same clustering algorithm as UCLUST and CD-HIT. This algorithm
is mainly useful to detect the "erroneous" sequences created during amplification and sequencing
protocols, deriving from "true" sequences.

The input can be either the standard input (stdin), or a file in FASTA format.

Argument: the sequence dataset to cluster.

For help :

sumaclust	-h	

sumaclust	-t	0.97	my_dataset.fasta	>	clusters_of_seqs_with_similarity_>_97%.fasta

sumaclust	[-l|L|a|n|r|d|e|o|g|f]	[-t	threshold_value]	[-s	sorting_key]	[-R	maximum_ratio]	[-p	number_of_threads]	[-B	file_name_for_BIOM-formatted_output]	[-O	file_name_for_OTU_table-formatted_output]	[-F	file_name_for_FASTA-formatted_output]	[dataset]

sumaclust	-d	-r	-t	2	my_dataset.fasta	>	clusters_of_seqs_with_distance_<=_2_differences.fasta

Documentation

Using Sumaclust

Input

Usage

Examples

Options

Sumaclust's default output is in fasta format. There are four fields added in the headers of all sequences.
Those fields are of the form [key=value;]. The four keys are cluster , cluster_score ,
cluster_center and cluster_weight and their values correspond respectively to the identifier of

the center of the sequence's cluster, the similarity score of the sequence with this center, a boolean
indicating whether the sequence is the center of its cluster, and the total number of sequences in the cluster
to which the sequence belongs.

Example where seq_1 is a cluster center and seq_2 is clustered with seq_1 :

There is a possibility to print the clusters in BIOM format with the –B option, and/or in OTU map
(observation map) format with the –O option. The FASTA output can then be deactivated with the –f

option. The FASTA output is written to the standard output by default, but can be written to a file using the
–F option. In the following examples, the first one prints results in FASTA and BIOM formats, and the

second one prints results in BIOM and OTU map formats:

-h	:	[H]elp	-	print	the	help		
-l	:	Reference	sequence	length	is	the	shortest.		
-L	:	Reference	sequence	length	is	the	largest.		
-a	:	Reference	sequence	length	is	the	alignment	length	(default).		
-n	:	Score	is	normalized	by	reference	sequence	length	(default).		
-r	:	Raw	score,	not	normalized.		
-d	:	Score	is	expressed	in	distance	(default	:	score	is	expressed	in	similarity).		
-t	##.##	:	Score	threshold	for	clustering.	If	the	score	is	normalized	and	expressed	in	similarity	(default),												it	is	an	identity,	e.g.	0.95	for	an	identity	of	95%.	If	the	score	is	normalized	and	expressed	in	distance,	it	is	(1.0	-	identity),	e.g.	0.05	for	an	identity	of	95%.	If	the	score	is	not	normalized	and	expressed	in	similarity,	it	is	the	length	of	the	Longest	Common	Subsequence.	If	the	score	is	not	normalized	and	expressed	in	distance,	it	is	(reference	length	-	LCS	length).	Only	sequences	with	a	similarity	above	##.##	with	the	representative	sequence	of	a	cluster	are	assigned	to	that	cluster.	Default:	0.97.		
-e	:	Exact	option	:	A	sequence	is	assigned	to	the	cluster	with	the	representative	sequence	presenting	the	highest	similarity	score	>	threshold,	as	opposed	to	the	default	'fast'	option	where	a	sequence	is	assigned	to	the	first	cluster	found	with	a	representative	sequence	presenting	a	score	>	threshold.
-R	##				:	Maximum	ratio	between	the	counts	of	two	sequences	so	that	the	less	abundant	one	can	be	considered													as	a	variant	of	the	more	abundant	one.	Default:	1.0.
-p	##	:	Multithreading	with	##	threads	using	openMP.		
-s	####	:	Sorting	by	####.	Must	be	'None'	for	no	sorting,	or	a	key	in	the	fasta	header	of	each	sequence,	except	for	the	count	that	can	be	computed	(default	:	sorting	by	count).	
-o	:	Sorting	is	in	ascending	order	(default:	descending).	
-g	:	n's	are	replaced	with	a's	(default:	sequences	with	n's	are	discarded).
-B	###			:	Output	of	the	OTU	table	in	BIOM	format	is	activated,	and	written	to	file	###.
-O	###			:	Output	of	the	OTU	map	(observation	map)	is	activated,	and	written	to	file	###.
-F	###			:	Output	in	FASTA	format	is	written	to	file	###	instead	of	standard	output.
-f	:	Output	in	FASTA	format	is	deactivated.

>seq_1	species=Heracleum	maximum;	count=3;	cluster=seq_1;	cluster_score=1.0;	cluster_center=True;	cluster_weight=5;	atcctattttccaaaaacaaacaaaggcccagaaggtgaaaaaag	
>seq_2	species=Cnidium	cnidiifolium;	count=2;	cluster=seq_1;	cluster_score=0.955556;	cluster_center=False;	cluster_weight=5;	atcctattttccaaaaacaacaaaggcccataaggtgaaaaaag

sumaclust	-B	clusters_of_seqs_with_similarity_>_97%.biom	my_dataset.fasta	>	clusters_of_seqs_with_similarity_>_97%.fasta

sumaclust	-F	-B	clusters_of_seqs_with_similarity_>_97%.biom	-O	clusters_of_seqs_with_similarity_>_97%.txt	my_dataset.fasta

Output

Sumaclust clusters sequences using the same clustering algorithm as UCLUST and CD-HIT. The problem
is defined as follows:

Sumaclust browses through the dataset, in the order in which the sequences have been sorted with the -s
option. By default, sequences are sorted by decreasing abundance, because this enables to identify 'true'
and 'erroneous' sequences the best, as 'true' sequences tend to end up as cluster centers. The first
sequence of the ordered list is considered the center of the first cluster. Each sequence, following the
ordered list, is compared with the centers of the existing clusters, respecting the initial list's order. If the
similarity of the query sequence with a center is above a chosen threshold, and their abundance ratio is
below the maximum ratio chosen, the sequence is grouped in the cluster of this center. Otherwise, a new
cluster is created with the query sequence as the center.

An edge is created between a query sequence and a center sequence only if their abundance ratio, i.e. the
query sequence’s count divided by the center sequence’s count, is below the maximum ratio chosen with
the –R option. This can prevent sequences that are very abundant, and therefore likely true sequences,
to be considered a variant of another true sequence that is only a little more abundant and very close to
them.

A good way to evaluate the similarities between full-length sequences is to use indices based on the length
of the Longest Common Subsequence (LCS), and in particular, a good similarity indice is the length of the
LCS divided by the length of the shortest alignment representing this LCS, giving an identity percentage.
This is the similarity indice used by Sumatra by default. Other similarity indices are available through the
options.

Lossless k-mer filter. Since we are usually interested in higly similar sequences, Sumatra uses similarity
thresholds under which similarities are not reported. A lossless filtering step enables to only align couples of
sequences that potentially have an identity greater than the chosen threshold. This filter is based on the
number of overlapping k-mers that the sequences must share in order to have an identity at least equal to
the threshold. With typical DNA metabarcoding datasets (a few millions sequences of 50-300 bp and
threshold around 90-95% id), we empirically determined that the most efficient filtering was achieved with 4-
mers and 5-mers.

How SUMACLUST works

Clustering algorithm

About the abundance ratio

Similarity computation

Similarity indice

Fast computation of the similarity

Alignment within a diagonal band. Alignments are computed using a Needleman-Wunsch algorithm. In the
scoring system used, matches are rewarded by one point, and mismatches and insertions/deletions are not
penalised. The computation of the length of the LCS and the length of the alignment by the NWS algorithm
has a quadratic complexity in time. It is responsible for most of the computation time. At high identity
thresholds, the alignment computation can be done only in a diagonal band of the alignment matrix, gaining
a considerable amount of time depending on the threshold.

Parallelization. There are two levels of parallelization implemented in Sumatra. Both the filtering and the
alignments steps are optimized with the use of Simple Instruction Multiple Data instructions (SIMD). Since
4-mers enable to work easily with SIMD instructions, we implemented a 4-mer filter. Moreover, the program
can be run on multiple threads.

